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a b s t r a c t

In this study, a quantitative structure–property relationship (QSPR) is presented to predict the upper
flammability limit percent (UFLP) of pure compounds. The obtained model is a five parameters multi-
linear equation. The parameters of the model are calculated only from chemical structure. The average
absolute error and squared correlation coefficient of the obtained model over all 865 pure compounds
used to develop the model are 9.7%, and 0.92, respectively.
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. Introduction

Knowledge of flammability limits is needed for safe and eco-
omical operation of some chemical and petrochemical processes.
his case would be more important when the process is dealing
ith flammable or combustible materials [1–5].

A flammable gas burns in air only over a limited range of com-
osition. Below a certain concentration of the flammable gas, the
ixture lacks sufficient fuel (substance) to burn. This is sometimes

alled the lower flammability limit percent (LFLP). On the other
ands, above the upper flammable limit percent (UFLP) the mix-
ure of substance and air is too rich in fuel (deficient in oxygen) to
urn. As a result, the concentrations between these limits constitute
he flammable range [1–5].

UFLP flammability limit percent is one of the most important
arameters used to evaluate the potential for fire and explosion of

ndustrial materials in the chemical and petrochemical industries

1–5].

There are several methods for estimation of the UFLP of pure
ompounds. These methods can be classified into several, cate-
ories containing empirical correlations, critical flame temperature
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correlations, structural group contribution models, and neural net-
work models. These methods are reviewed by Vidal et al. [2].

The most important disadvantage of these correlations is their
limitations in use. These correlations are obtained based on an espe-
cial family of compounds or a small group of compounds. Therefore,
the range of applicability of these correlations is very limited.

Quantitative structure–property relationship (QSPR) analysis is
now a well-established and useful technique to correlate various
simple and complex physicochemical properties of a compound
with its molecular structure, through a variety of molecular descrip-
tors (these molecular descriptors are calculated using known
mathematical algorithms from molecular structure of every com-
pound). The basic strategy of QSPR analysis is to find optimum
quantitative relationships, which can then be used for the pre-
diction of the property from molecular structures. Once a reliable
relation has been obtained, it is possible to use it to predict that
same property for other structures not yet measured or even not
yet prepared. The use of this relation has certain, rather obvious
limitation: (i) the family of compounds used to derive the QSPR
(the “training set”) should be chemically similar and (ii) realistic
predictions can only be made for compounds that are chemi-
cally related to those from which the QSPR model was derived,

i.e., predictions should be of interpolations or short extrapolations
[6].

In this study, a quantitative structure–property relationship
study is presented to develop a model for predicting the UFLP of
a large number of pure compounds. Application of a large num-

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:fghara@ut.ac.ir
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neighbor degree and edge multiplicity. Increase in this descriptor
increases the UFLP.

“MATS4m” is of 2D autocorrelations. 2D autocorrelations
are spatial autocorrelations calculated on a H-depleted molec-
ular graph weighted by atom physico-chemical properties.

Table 1
The five molecular descriptors entered into the best obtained multi-linear equation
(Eq. (1)).

ID Molecular
descriptor

Type Definition
08 F. Gharagheizi / Journal of Haza

er of compounds can help to extend applicability of the obtained
odel.

. Materials and methods

.1. Data set

Evaluated databases such as DIPPR 801 database [7] are useful
ools for developing new property prediction models. DIPPR 801
s recommended by AIChE (American Institute of Chemical Engi-
eers) for physical properties of pure compounds. In this study, 865
ure compounds were extracted and their UFLP were used as main
ataset. These compounds and their UFLP values are presented as
upplementary materials.

.2. Determination of molecular descriptors

In this step, the molecular structures of all 865 pure com-
ounds were drawn into Hyperchem software [8] and optimized
sing the MM+ molecular mechanics force field. Thereafter, using
hese optimized molecular structures; molecular descriptors were
alculated by Dragon software [9]. Dragon software can calculate
664 molecular descriptors for every molecule. Of course, these
olecular descriptors have been calculated for about 2,34,000 pure

ompounds using Dragon software and are accessible from milano
hemometrics and QSAR research group web site.1 This web site
an be searched for desired pure compounds. For more informa-
ion about the types of the molecular descriptors which Dragon
an calculate, and the procedure of calculation of the descriptors,
efer to Dragon software user’s guide [9].

.3. GA-MLR calculations

Generally, in QSPR studies, after calculating molecular descrip-
ors, the problem is to find a linear equation that can predict the
esired property with the least number of variables as well as with
he highest accuracy. In other words, the problem is to find a sub-
et of variables (most statistically effective molecular descriptors
f UFLP) from all available variables (all molecular descriptors) so
hat can predict UFLP, with minimum error in comparison with the
vailable data.

A generally accepted method for this problem is genetic algo-
ithm based multivariate linear regression (GA-MLR). In this
ethod, genetic algorithm is used to select best subset variables
ith respect to an objective function. This algorithm has been pre-

ented by Leardi et al. for the first time [10].
In this study, the GA-MLR technique presented by Leardi et al.

10] with RQK function presented by Todeschini et al. [11] was used
o subset variable selection. This methodology has been extensively
resented in the previous works of the author and the results are
atisfactory [12–25].

Before performing GA-MLR technique, the data set must be
ivided into two new collections. First one is allocated for train-

ng and second one is allocated for testing. By means of the training
et, the best model is found and then the predictive power of the
btained model is checked by the test set as external dataset. In this
ork, 80% of the database was used for training set and 20% for test
et (from 865 compounds, 693 compounds are in the training set
nd 172 compounds are in the test set). The selection was randomly
one.

The inputs to our program are the pool of molecular
escriptors, the UFLP of pure compounds, and the number of

1 http://michem.disat.unimib.it/mole db.
Materials 167 (2009) 507–510

molecular descriptors which we want to enter into our final
model.

To obtain the best multivariate linear equation, all molecular
descriptors must be introduced to the program and the minimum
number of possible variables must be tested at the starting point.
So running the program is started with one variable. After running
the program, we must obtain the best multivariate linear model.
In the next steps, we increase the number of desired variables to
two, three, five, and so on, and we must repeat all calculations for
them.

When we saw that increasing in the number of variables has no
considerable effect on the accuracy of the best-obtained model, the
calculations must be stopped, because the best multivariate linear
model has been obtained.

3. Results and discussion

By presented procedure, the best multivariate linear equation
was obtained. This multivariate linear model has five parameters.
This equation is:

UFLP = 10.35415(±0.31456) − 1.35486(±0.08144)Jhetv
− 42.28779(±0.1.44928)PW5 + 18.59571(±0.62369)SIC0
− + 0.98203(±0.0703)MATS4m
− − 0.68363(±0.03235)MLOGP

ntraining = 693; ntest = 172; R2 = 0.9202;
Q 2

LOO = 0.9184; Q 2
BOOT = 0.9172; Q 2

EXT = 0.9269;
s = 1.043; a = 0.918; F = 1586.34;

(1)

RQK function parameters �K = 0.095; �Q = 0.000; RP = 0.009;
RN = 0.000, where UFLP is upper flammability limit percent in vol%.

The molecular descriptors and their physical meanings are pre-
sented in Table 1.

“Jhetv” and “PW5” are of topological descriptors. Topological
descriptors are based on a graph representation of the molecule.
They are numerical quantifiers of molecular topology obtained
by the application of algebraic operators to matrices representing
molecular graphs and whose values are independent of vertex num-
bering or labeling. They can be sensitive to one or more structural
features of the molecule such as size, shape, symmetry, branching
and cyclicity and can also encode chemical information concern-
ing atom type and bond multiplicity. When these two descriptors
increase the UFLP decreases.

“SIC0” is of information indices. These molecular descriptors are
calculated as information content of molecules, based on the cal-
culation of equivalence classes from the molecular graph. Among
them, the indices of neighborhood symmetry take into account also
1 Jhetv Topological descriptors Balaban-type index from van der
Waals weighted distance matrix

2 PW5 Topological descriptors Path/walk 5 Randic shape index
3 SIC0 Information indices Structural information content

(neighborhood symmetry of 0-order)
4 MATS4m 2D autocorrelations Moran autocorrelation-lag 4 weighted

by atomic masses
5 MLOGP Molecular properties Moriguchi octanol–water partition

coefficient (log P)

http://michem.disat.unimib.it/mole_db
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Fig. 1. Comparison between the predicted UFLP by Eq. (1) and DIPPR 801 data.

D autocorrelations are molecular descriptors which describe
ow a considered property is distributed along a topological
olecular structure. When this descriptor increases the UFLP

ncreases.
“MLOGP” is of molecular properties. These descriptors include

set of heterogeneous molecular descriptors describing physico-
hemical and biological properties as well as some molecular
haracteristics obtained by literature models. Increase in this
escriptor decreases the UFLP.

ntraining and ntest are the number of compounds of the train-
ng set and ntraining the test set, respectively. For checking validity
f the model, more, bootstrap technique, y-scrambling, and exter-
al validation techniques were used [11]. The bootstrapping was
epeated 5000 times. Also y-scrambling was repeated 300 times.
s can be seen the difference between, Q 2

LOO, Q 2
BOOT, Q 2

EXT and R2

how that the obtained model is a good model and has good pre-
ictive power [11]. Also the intercept value of the y-scrambling
echnique has low value (a = 0.918) that reveals the validity of the

odel (The y-scrambling, bootstrapping, and external validation
echniques have been extensively presented by Todeschini et al.
11]).

All of the validation techniques show that the obtained model
s a valid model and can be used to predict the UFLP of pure com-
ounds.

The predicted values of UFLP using Eq. (1) in comparison with
he DIPPR 801 data are presented in Fig. 1. The values of the pre-
icted UFLP in comparison to the DIPPR 801 data are presented

s supplementary materials. Also the values of the descriptors and
tatus of all of the pure compounds (training set or test set) are
resented as supplementary materials.

ig. 2. Percent error of predicted UFLP by Eq. (1) over all of 865 pure compounds
sed in this study.
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4. Conclusion

In this study a simple molecular-based model was presented to
predict UFLP flammability limit percent (UFLP) of pure compounds.
Also, validity and predictive power of the model was checked
by several techniques. As a result, obtained model has predictive
power and can be used to predict the UFLP of pure compounds.
The squared correlation coefficient and obtained by this equation
over all 865 pure compounds are 0.92. Also the average absolute
error of the model over all 865 pure compounds is equal to 9.7%.
The percentage error obtained by Eq. (1) is schematically shown in
Fig. 2.

Since the model has been obtained using 865 pure compounds
which belong to diverse chemical groups, it can be used to predict
the UFLP of every regular compound.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jhazmat.2009.01.002.
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